Package: bigmds (via r-universe)

September 5, 2024

Title Multidimensional Scaling for Big Data

Version 3.0.0

Description MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions n × n. When n is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. With this package, we address these problems by means of six algorithms, being two of them original proposals: - Landmark MDS proposed by De Silva V. and JB. Tenenbaum (2004). - Interpolation MDS proposed by Delicado P. and C. Pachón-García (2021) <arXiv:2007.11919> (original proposal). - Reduced MDS proposed by Paradis E (2018). - Pivot MDS proposed by Brandes U. and C. Pich (2007) - Divide-and-conquer MDS proposed by Delicado P. and C. Pachón-García (2021) <arXiv:2007.11919> (original proposal). - Fast MDS, proposed by Yang, T., J. Liu, L. McMillan and W. Wang (2006).

License MIT + file LICENSE

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 3.0.2)

Suggests testthat

Imports pracma, svd, corpcor, parallel, stats

URL https://github.com/pachoning/bigmds

BugReports https://github.com/pachoning/bigmds/issues

Repository https://pachoning.r-universe.dev

RemoteUrl https://github.com/pachoning/bigmds

RemoteRef HEAD

RemoteSha 26c5739325d0ada177e4a0e216bf599b70f49ce7

2 divide_conquer_mds

Contents

	livide_conquer_mds					
	ast_mds					
	nterpolation_mds		4			
	andmark_mds		6			
	oivot_mds		7			
	reduced_mds		8			
Index			10			
divide_conquer_mds Divide-and-conquer MDS						

Description

Roughly speaking, a large data set, x, of size n is divided into parts, then classical MDS is performed over every part and, finally, the partial configurations are combined so that all the points lie on the same coordinate system with the aim to obtain a global MDS configuration.

Usage

```
divide_conquer_mds(x, 1, c_points, r, n_cores)
```

Arguments

X	A matrix with n points (rows) and k variables (columns).
1	The size for which classical MDS can be computed efficiently (using cmdscale function). It means that if \bar{l} is the limit size for which classical MDS is applicable, then $1 \le \bar{l}$.
c_points	Number of points used to align the MDS solutions obtained by the division of x into p data subsets. Recommended value: $5 \cdot r$.
r	Number of principal coordinates to be extracted.
n_cores	Number of cores wanted to use to run the algorithm.

Details

The divide-and-conquer MDS starts dividing the n points into p partitions: the first partition contains 1 points and the others contain 1-c_points points. Therefore, $p=1+(n-1)/(1-c_points)$. The partitions are created at random.

Once the partitions are created, c_points different random points are taken from the first partition and concatenated to the other partitions After that, classical MDS is applied to each partition, with target low dimensional configuration r.

Since all the partitions share c_points points with the first one, Procrustes can be applied in order to align all the configurations. Finally, all the configurations are concatenated in order to obtain a global MDS configuration.

fast_mds 3

Value

Returns a list containing the following elements:

points A matrix that consists of n points (rows) and r variables (columns) corresponding to the principal coordinates. Since a dimensionality reduction is performed, r << k

eigen The first r largest eigenvalues: $\bar{\lambda}_i$, $i \in \{1, \dots, r\}$, where $\bar{\lambda}_i = 1/p \sum_{j=1}^p \lambda_i^j / n_j$, being λ_i^j the i-th eigenvalue from partition j and n_j the size of the partition j.

References

Delicado P. and C. Pachón-García (2021). *Multidimensional Scaling for Big Data*. https://arxiv.org/abs/2007.11919.

Borg, I. and P. Groenen (2005). *Modern Multidimensional Scaling: Theory and Applications*. Springer.

Examples

fast_mds

Fast MDS

Description

Fast MDS uses recursive programming in combination with a divide and conquer strategy in order to obtain an MDS configuration for a given large data set x.

Usage

```
fast_mds(x, 1, s_points, r, n_cores)
```

Arguments

Х	A matrix with n individuals (rows) and k variables (columns).
1	The size for which classical MDS can be computed efficiently (using cmdscale function). It means that if \bar{l} is the limit size for which classical MDS is applicable, then $1 \le \bar{l}$.
s_points	Number of points used to align the MDS solutions obtained by the division of x into p submatrices. Recommended value: $5 \cdot r$.
r	Number of principal coordinates to be extracted.
n_cores	Number of cores wanted to use to run the algorithm.

4 interpolation_mds

Details

Fast MDS randomly divides the whole sample data set, x, of size n into p = 1/s_points data subsets, where $1 \le \bar{l}$ being \bar{l} the limit size for which classical MDS is applicable. Each one of the p data subsets has size $\tilde{n} = n/p$. If $\tilde{n} \le 1$ then classical MDS is applied to each data subset. Otherwise, fast MDS is recursively applied. In either case, a final MDS configuration is obtained for each data subset.

In order to align all the partial solutions, a small subset of size s_points is randomly selected from each data subset. They are joined to form an alignment set, over which classical MDS is performed giving rise to an alignment configuration. Every data subset shares s_points points with the alignment set. Therefore every MDS configuration can be aligned with the alignment configuration using a Procrustes transformation.

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to the principal coordinates. Since we are performing a dimensionality reduction, r << k

eigen The first r largest eigenvalues: $\bar{\lambda}_i$, $i \in \{1, ..., r\}$, where $\bar{\lambda}_i = 1/p \sum_{j=1}^p \lambda_i^j / n_j$, being λ_i^j the i-th eigenvalue from partition j and n_j the size of the partition j.

References

Delicado P. and C. Pachón-García (2021). *Multidimensional Scaling for Big Data*. https://arxiv.org/abs/2007.11919.

Yang, T., J. Liu, L. McMillan and W.Wang (2006). *A fast approximation to multidimensional scaling*. In Proceedings of the ECCV Workshop on Computation Intensive Methods for Computer Vision (CIMCV).

Borg, I. and P. Groenen (2005). *Modern Multidimensional Scaling: Theory and Applications*. Springer.

Examples

```
set.seed(42) x \leftarrow matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1)) mds \leftarrow fast_mds(x = x, 1 = 200, s_points = 5 * 2, r = 2, n_cores = 1) head(mds$points) mds$eigen
```

interpolation_mds 5

Description

Given that the size of the data set is too large, this algorithm consists of taking a random sample from it of size $1 \le \bar{l}$, being \bar{l} the limit size for which classical MDS is applicable, to perform classical MDS to it, and to extend the obtained results to the rest of the data set by using Gower's interpolation formula, which allows to add a new set of points to an existing MDS configuration.

Usage

```
interpolation_mds(x, 1, r, n_cores)
```

Arguments

X	A matrix with n	individuals (rows)	and k variables	(columns).
---	-------------------	--------------------	-------------------	------------

The size for which classical MDS can be computed efficiently (using cmdscale function). It means that if \bar{l} is the limit size for which classical MDS is applicable, then $1 < \bar{l}$.

r Number of principal coordinates to be extracted.

n_cores Number of cores wanted to use to run the algorithm.

Details

Gower's interpolation formula is the central piece of this algorithm since it allows to add a new set of points to an existing MDS configuration so that the new one has the same coordinate system.

Given the matrix x with n points (rows) and and k variables (columns), a first data subsets (based on a random sample) of size 1 is taken and it is used to compute a MDS configuration.

The remaining part of x is divided into p = (n-1)/1 data subsets (randomly). For every data subset, it is obtained a MDS configuration by means of *Gower's interpolation formula* and the first MDS configuration obtained previously. Every MDS configuration is appended to the existing one so that, at the end of the process, a global MDS configuration for x is obtained.

This method is similar to landmark_mds() and reduced_mds().

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to the principal coordinates. Since we are performing a dimensionality reduction, r << k

eigen The first r largest eigenvalues: $\lambda_i, i \in \{1, \dots, r\}$, where each λ_i is obtained from applying classical MDS to the first data subset.

References

Delicado P. and C. Pachón-García (2021). *Multidimensional Scaling for Big Data*. https://arxiv.org/abs/2007.11919.

Borg, I. and P. Groenen (2005). *Modern Multidimensional Scaling: Theory and Applications*. Springer.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

6 landmark_mds

Examples

```
set.seed(42) \\ x \leftarrow matrix(data = rnorm(4 * 10000), nrow = 10000)  %*% diag(c(9, 4, 1, 1)) \\ mds \leftarrow interpolation_mds(x = x, 1 = 200, r = 2, n_cores = 1) \\ head(mds$points) \\ mds$eigen
```

landmark_mds

Landmark MDS

Description

Landmark MDS (LMDS) algorithm applies first classical MDS to a subset of the data (*landmark points*) and then the remaining individuals are projected onto the landmark low dimensional configuration using a distance-based triangulation procedure.

Usage

```
landmark_mds(x, num_landmarks, r)
```

Arguments

A matrix with n points (rows) and k variables (columns).

num_landmarks

Number of landmark points to obtain an initial MDS configuration. It is equivalent to 1 parameter used in interpolation_mds(), divide_conquer_mds() and fast_mds(). Therefore, it is the size for which classical MDS can be computed efficiently (using cmdscale function). It means that if \bar{l} is the limit size for which classical MDS is applicable, then $1 \le \bar{l}$.

r Number of principal coordinates to be extracted.

Details

LMDS applies first classical MDS to a subset of the data (*landmark points*). Then, it uses a distance-based triangulation procedure to project the non-landmark individuals. This distance-based triangulation procedure coincides with *Gower's interpolation formula*.

This method is similar to interpolation_mds() and reduced_mds().

Value

Returns a list containing the following elements:

points A matrix that consists of n points (rows) and r variables (columns) corresponding to the principal coordinates. Since a dimensionality reduction is performed, r << k

eigen The first r largest eigenvalues: $\lambda_i, i \in \{1, ..., r\}$, where each λ_i is obtained from applying classical MDS to the first data subset.

7 pivot_mds

References

Delicado P. and C. Pachón-García (2021). Multidimensional Scaling for Big Data. https:// arxiv.org/abs/2007.11919.

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications. Springer.

De Silva V. and JB. Tenenbaum (2004). Sparse multidimensional scaling using landmark points. Technical Report, Stanford University.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

Examples

```
set.seed(42)
x \leftarrow matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds \leftarrow landmark_mds(x = x, num_landmarks = 200, r = 2)
head(mds$points)
mds$eigen
```

pivot_mds

Pivot MDS

Description

Pivot MDS, introduced in the literature of graph layout algorithms, is similar to Landmark MDS (landmark_mds()) but it uses the distance information between landmark and non-landmark points to improve the initial low dimensional configuration, as more relations than just those between landmark points are taken into account.

Usage

```
pivot_mds(x, num_pivots, r)
```

Arguments

A matrix with n individuals (rows) and k variables (columns). Х

num_pivots Number of pivot points to obtain an initial MDS configuration. It is equivalent

to 1 parameter used in $interpolation_mds()$, $divide_conquer_mds()$ and fast_mds(). Therefore, it is the size for which classical MDS can be computed efficiently (using cmdscale function). It means that if l is the limit size for

which classical MDS is applicable, then $1 \le \bar{l}$.

Number of principal coordinates to be extracted. r

8 reduced_mds

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to the principal coordinates. Since we are performing a dimensionality reduction, r << k

eigen The first r largest eigenvalues: $\lambda_i, i \in \{1, \dots, r\}$, where each λ_i is obtained from applying classical MDS to the first data subset.

References

Delicado P. and C. Pachón-García (2021). *Multidimensional Scaling for Big Data*. https://arxiv.org/abs/2007.11919.

Brandes U. and C. Pich (2007). *Eigensolver Methods for Progressive Multidimensional Scaling of Large Data*. Graph Drawing.

Borg, I. and P. Groenen (2005). *Modern Multidimensional Scaling: Theory and Applications*. Springer.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

Examples

```
set.seed(42) \\ x \leftarrow matrix(data = rnorm(4 * 10000), nrow = 10000)  %*% diag(c(9, 4, 1, 1)) \\ mds \leftarrow pivot_mds(x = x, num_pivots = 200, r = 2) \\ head(mds*points) \\ mds*eigen
```

reduced_mds

Reduced MDS

Description

A data subset is selected and classical MDS is performed on it to obtain the corresponding low dimensional configuration. Then the reaming points are projected onto this initial configuration.

Usage

```
reduced_mds(x, 1, r, n_cores)
```

Arguments

Х	A matrix with n individuals (rows) and k variables (columns).
1	The size for which classical MDS can be computed efficiently (using cmdscale function). It means that if \bar{l} is the limit size for which classical MDS is applicable, then $1 \le \bar{l}$.
r	Number of principal coordinates to be extracted.
n_cores	Number of cores wanted to use to run the algorithm.

reduced_mds 9

Details

Gower's interpolation formula is the central piece of this algorithm since it allows to add a new set of points to an existing MDS configuration so that the new one has the same coordinate system.

Given the matrix x with n points (rows) and and k variables (columns), a first data subsets (based on a random sample) of size 1 is taken and it is used to compute a MDS configuration.

The remaining part of x is divided into p = (n-1)/1 data subsets (randomly). For every data point, it is obtained a MDS configuration by means of *Gower's interpolation formula* and the first MDS configuration obtained previously. Every MDS configuration is appended to the existing one so that, at the end of the process, a global MDS configuration for x is obtained.

#'This method is similar to landmark_mds() and interpolation_mds().

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to the principal coordinates. Since we are performing a dimensionality reduction, r << k

eigen The first r largest eigenvalues: $\lambda_i, i \in \{1, ..., r\}$, where each λ_i is obtained from applying classical MDS to the first data subset.

References

Delicado P. and C. Pachón-García (2021). *Multidimensional Scaling for Big Data*. https://arxiv.org/abs/2007.11919.

Paradis E. (2018). *Multidimensional Scaling With Very Large Datasets*. Journal of Computational and Graphical Statistics.

Borg, I. and P. Groenen (2005). *Modern Multidimensional Scaling: Theory and Applications*. Springer.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

Examples

Index

```
divide_conquer_mds, 2
divide_conquer_mds(), 6, 7

fast_mds, 3
fast_mds(), 6, 7

interpolation_mds, 4
interpolation_mds(), 6, 7, 9

landmark_mds, 6
landmark_mds(), 5, 7, 9

pivot_mds, 7

reduced_mds, 8
reduced_mds(), 5, 6
```