Package: bigmds 3.0.0

bigmds: Multidimensional Scaling for Big Data

MDS is a statistic tool for reduction of dimensionality, using as input a distance matrix of dimensions n × n. When n is large, classical algorithms suffer from computational problems and MDS configuration can not be obtained. With this package, we address these problems by means of six algorithms, being two of them original proposals: - Landmark MDS proposed by De Silva V. and JB. Tenenbaum (2004). - Interpolation MDS proposed by Delicado P. and C. Pachón-García (2021) <arxiv:2007.11919> (original proposal). - Reduced MDS proposed by Paradis E (2018). - Pivot MDS proposed by Brandes U. and C. Pich (2007) - Divide-and-conquer MDS proposed by Delicado P. and C. Pachón-García (2021) <arxiv:2007.11919> (original proposal). - Fast MDS, proposed by Yang, T., J. Liu, L. McMillan and W. Wang (2006).

Authors:Cristian Pachón García [aut, cre], Pedro Delicado [aut]

bigmds_3.0.0.tar.gz
bigmds_3.0.0.zip(r-4.5)bigmds_3.0.0.zip(r-4.4)bigmds_3.0.0.zip(r-4.3)
bigmds_3.0.0.tgz(r-4.5-any)bigmds_3.0.0.tgz(r-4.4-any)bigmds_3.0.0.tgz(r-4.3-any)
bigmds_3.0.0.tar.gz(r-4.5-noble)bigmds_3.0.0.tar.gz(r-4.4-noble)
bigmds_3.0.0.tgz(r-4.4-emscripten)bigmds_3.0.0.tgz(r-4.3-emscripten)
bigmds.pdf |bigmds.html
bigmds/json (API)
NEWS

# Install 'bigmds' in R:
install.packages('bigmds', repos = c('https://pachoning.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/pachoning/bigmds/issues

On CRAN:

Conda:

4.08 score 17 stars 14 scripts 365 downloads 6 exports 3 dependencies

Last updated 1 years agofrom:26c5739325. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 04 2025
R-4.5-winOKMar 04 2025
R-4.5-macOKMar 04 2025
R-4.5-linuxOKMar 04 2025
R-4.4-winOKMar 04 2025
R-4.4-macOKMar 04 2025
R-4.4-linuxOKMar 04 2025
R-4.3-winOKMar 04 2025
R-4.3-macOKMar 04 2025

Exports:divide_conquer_mdsfast_mdsinterpolation_mdslandmark_mdspivot_mdsreduced_mds

Dependencies:corpcorpracmasvd

Readme and manuals

Help Manual

Help pageTopics
Divide-and-conquer MDSdivide_conquer_mds
Fast MDSfast_mds
Interpolation MDSinterpolation_mds
Landmark MDSlandmark_mds
Pivot MDSpivot_mds
Reduced MDSreduced_mds